<sup id="m6mg2"><code id="m6mg2"></code></sup>
<object id="m6mg2"><wbr id="m6mg2"></wbr></object>
<object id="m6mg2"><option id="m6mg2"></option></object>
<sup id="m6mg2"></sup>
<object id="m6mg2"><option id="m6mg2"></option></object>
<object id="m6mg2"></object>
<sup id="m6mg2"></sup><samp id="m6mg2"><object id="m6mg2"></object></samp>
<menu id="m6mg2"></menu>
<acronym id="m6mg2"><noscript id="m6mg2"></noscript></acronym>

壓力變送器

射頻導納液位開(kāi)關(guān)、 投入式液位計、 阻旋式料位開(kāi)關(guān)、 HART475手操器、 精密壓力表、 壓力校驗儀、 HART手操器; 一體化數顯溫度計; 熱電偶; 熱電偶溫度計; 射頻導納料位開(kāi)關(guān); 精密數字壓力表;

脫硫吸收塔液位測量的幾種方法

作時(shí)間:2019-05-30  來(lái)源:  作者:
   

  摘 要:吸收塔液位在脫硫系統中是非常重要的參數,系統中循環(huán)泵、氧化風(fēng)機、攪拌器等關(guān)鍵設備的連鎖保護條件均與之直接關(guān)聯(lián),因此吸收塔液位測量數據的準確性及穩定性決定脫硫系統的穩定運行,也影響著(zhù)與脫硫系統相關(guān)的其他工藝系統的安全運行。nOU壓力變送器_差壓變送器_液位變送器_溫度變送器

 
引言
目前大多數煙氣脫硫系統采用的是石灰石—石膏濕法脫硫技術(shù),其中吸收塔是進(jìn)行煙氣脫硫的主要設備,吸收塔液位對脫硫系統的安全可靠運行有著(zhù)極其重要的作用,但由于吸收塔本體結構的特殊性,無(wú)法使用當前主流的液位計進(jìn)行直接測量。本文介紹目前采用的幾種測量吸收塔液位的方法,并分析各種測量方法的優(yōu)缺點(diǎn)。
 
石灰石—石膏法脫硫系統的主要設備是吸收塔,如圖 1 所示,吸收塔主要由漿液氧化區、吸收區、噴淋層、除霧層、入口煙道及出口煙道組成。常規容器的液位測量可采用在容器頂部安裝超聲波液位計、雷達液位計或浮子液位計,或在側壁安裝磁翻板液位計加以測量。對于密度受溫度影響不大的液體,若是敞口容器,可在容器底部安裝壓力變送器,經(jīng)公式 H=(P/ρg)+h 計算后得出;若是密閉容器,則需安裝差壓變送器,經(jīng)公式 H=(ΔP/ρg)+h 計算后得出,式中,H 為液位高度,P 為壓力,ΔP 為差壓,ρ為液體密度,h 為壓力變送器或差壓變送器的安裝高度。
吸收塔結構
1 問(wèn)題產(chǎn)生
脫硫吸收塔內介質(zhì)比較復雜,在漿液氧化區內主要是硫酸鈣漿液、亞硫酸鈣漿液和氧化空氣,吸收區內是帶正壓的煙氣和漿液的混合物。由于吸收塔漿池上方是大量的噴淋漿液和煙氣混合物,因此無(wú)法在頂部安裝超聲波液位計或雷達液位計進(jìn)行測量。石灰石—石膏漿液主要有 3 點(diǎn)特殊性。
 
(1)為保證脫硫效率,漿液含固量高達 20%,即使在攪拌器的作用下讓漿液不停的流動(dòng),漿池上、下層密度也不均勻。
(2)漿液中的亞硫酸鈣具有很強的黏性,若將儀表探頭伸入其中,亞硫酸鈣慢慢附著(zhù)在探頭表面,從而影響儀表的正常工作,使測量數據失真。
(3)漿液中含有大量的氧化空氣,氧化空氣管網(wǎng)一般安裝在距塔底約 3 m 高的位置,氣泡上升過(guò)程中隨著(zhù)漿液壓強的減小而逐步膨脹,進(jìn)一步導致吸收塔內漿液上、下層密度的差距。由于漿液的以上特性,若僅在吸收塔側壁上安裝壓力變送器,是無(wú)法測量比較準確的液位數據的。此外,浮子液位計和磁翻板液位計更無(wú)法適應如此惡劣工況。
 
2 解決方案
為了比較準確測量吸收塔液位,目前國內的脫硫系統普遍采用壓力變送器測量吸收塔底部的壓力,并安裝漿液密度測量裝置,將數據遠傳至 DCS(Distributed Control System,集散控制系統)或 PLC(Programmable Logic Controller,可編程邏輯控制器)控制系統,然后根據公式 H=(P/ρg)+h 計算吸收塔的液位。由于密度測量方法多種多樣,但各有特點(diǎn),且差異較大,直接影響了工程的造價(jià)、測量裝置的穩定運行程度以及系統運行期間的的維護工作量大小。由于吸收塔液位在脫硫系統中是非常重要的參數,儀表數量按工藝要求均為冗余配置,以下各種測量方法中不再贅述。
(1)裝置一———質(zhì)量流量計+壓力變送器測量回路。此方法先利用質(zhì)量流量計實(shí)時(shí)測量漿液的密度,然后通過(guò)壓力變送器測出的壓力值計算吸收塔液位。密度測量回路主要由石膏漿液抽取泵(一用一備)、閥門(mén)(抽取泵入口閥、出口閥、沖洗閥、排放閥)、質(zhì)量流量計、壓力表及管件組成,壓力測量回路主要由壓力變送器、閥門(mén)、沖洗管路組成(圖 2)。啟動(dòng)密度測量回路時(shí),需先關(guān)閉沖洗閥、排放閥、出口閥,然后打開(kāi)入口閥,待抽取泵充滿(mǎn)漿液后啟泵,啟泵成功后再打開(kāi)出口閥,并根據泵出口壓力表的指示調節出口閥門(mén)至合適的壓力,以保證測量管內流速滿(mǎn)足測量的需要,又不至于流速過(guò)高,導致質(zhì)量流量計磨損嚴重,縮短儀表的使用壽命。當脫硫系統停運或質(zhì)量流量計需要維護檢修時(shí),應先停止漿液抽取泵,然后關(guān)閉入口閥,打開(kāi)排放閥,至測量管路內的漿液排盡后,打開(kāi)沖洗閥,用工藝水將管路沖洗干凈后即可關(guān)閉沖洗閥、排放閥和出口閥。
質(zhì)量流量計+壓力變送器測量回路
壓力測量?jì)x表采用一體化隔膜式壓力變送器,一次檢修閥應盡量靠近吸收塔側壁,采樣管應與側壁保持約 60°夾角,可減少漿液在測量管路中沉積,以防采樣管堵塞。此外,還應在靠近壓力變送器隔膜處安裝沖洗管路,定時(shí)沖洗壓力變送器的膜片、采樣管及檢修閥門(mén),以確保測量管路的暢通。
 
本方法測量的吸收塔液位應由公式 H=(P/ρg)+h 計算后得出。式中,H 為液位計算值,P 為壓力,ρ 為質(zhì)量流量計測出的漿液密度,g 為重力加速度,h 為壓力變送器的安裝高度。本法中的質(zhì)量流量計準確度高,精度可達 0.2%,完全滿(mǎn)足脫硫系統的運行要求;無(wú)直管段要求,安裝較為方便;可靠性高,維修率低。利用漿液抽取泵不斷抽取吸收塔中的漿液進(jìn)行測量,保證了測量數據的實(shí)時(shí)性。
 
(2)裝置二———音叉密度計+壓力變送器測量回路。本方法在吸收塔底部側壁上分別安裝音叉密度計和壓力變送器,其中音叉密度計用以測量漿液密度,壓力變送器用以測量漿池底部壓力,如圖 3 所示。為了保證儀表測量的可靠性及穩定性,安裝時(shí)應將儀表與吸收塔側壁保持大約 60°夾角,同時(shí)應安裝沖洗管路,定時(shí)沖洗采樣管及音叉密度計的傳感器。液位由公式 H=(P/ρg)+h 計算后得出。式中,H 為液位計算值,P 為壓力,ρ 為漿液密度,g 為重力加速度,h 為壓力變送器的安裝高度。
音叉密度計+壓力變送器測量回路
采用本方法測量時(shí),結構簡(jiǎn)單,減少了設備故障率,相應也減小了維護工作量,但由于音叉密度計的探頭是插入到吸收塔內的,無(wú)法安裝檢修閥門(mén)。若出現音叉密度計需要維護檢修時(shí),必須等脫硫系統停運并將吸收塔漿液排空后,才能將其拆卸送檢。因此建議將音叉密度計冗余配置,以增加本套裝置的可靠度。也可定制在線(xiàn)可插拔球閥組件,從而徹底杜絕檢修儀表時(shí)影響工藝系統運行的情況。
差壓變送器+壓力變送器測量回路
(3)裝置三———差壓變送器+壓力變送器測量回路。本套裝置采用差壓變送器測量漿液的密度,利用壓力變送器測量漿池底部的壓力,然后通過(guò)公式間接計算出吸收塔液位,如圖 4 所示。差壓變送器采用隔膜式分體結構,2 個(gè)遠傳膜片安裝在吸收塔側壁合適的位置(高差一般控制在 3~5 m),膜片通過(guò)毛細管與變送器本體連接。脫硫系統正常運行時(shí)漿液的密度大約控制在 1120 kg/m3 左右,因此吸收塔漿池介質(zhì)從工藝水變?yōu)檎5氖沂?mdash;石膏漿液時(shí),差壓變送器的數據相應從 29.4 kPa 上升至 32.9 kPa(膜片高差按 3 m 設計),變化范圍非常小,大約3.5 kPa,若儀表量程為 50 kPa,變化范圍僅占儀表量程的7%,因此應選擇高精度的微差壓變送器。
 
密度計算方法:ρ=ΔP/(gΔH)計算后得出。式中,ρ 為漿液密度計算值,ΔP 為差壓,g 為重力加速度,ΔH 為差壓變送器 2 個(gè)膜片的高度差。
液位計算方法:H=(P/ρg)+h 計算后得出。式中,H 為液位計算值,P 為壓力,ρ 為密度計算公式中的漿液密度計算值,g 為重力加速度,h 為壓力變送器的安裝高度。采用本裝置測量漿池液位時(shí),結構簡(jiǎn)單,差壓變送器和壓力變送器技術(shù)也非常成熟可靠,成本也較低。僅需安裝沖洗管路對儀表膜片和采樣管路定時(shí)沖洗,維護工作量相對較少。
 
3 測量裝置比較
以上 3 套裝置均是目前脫硫系統中常用的吸收塔液位測量裝置,各有優(yōu)缺點(diǎn)。
(1)裝置一使用的質(zhì)量流量計精度高、穩定性好,數據的可重復性也很好,因此測量漿液的密度值可靠性高,提高了整套液位測量裝置的綜合精度,在脫硫技術(shù)剛引入國內時(shí)曾大量使用。但裝置本身結構復雜,采用了專(zhuān)門(mén)的測量管路、泵及大量閥門(mén),增加了裝置的故障點(diǎn),維護工作量大大增加。
(2)裝置二在裝置一的基礎上做了一些改進(jìn),主要是取消了專(zhuān)門(mén)的密度測量管路,將密度測量?jì)x表直接安裝在吸收塔側壁上,密度測量采用了高精度的音叉密度計,大大簡(jiǎn)化了測量裝置。缺點(diǎn)是目前適合脫硫工況的音叉密度計生產(chǎn)廠(chǎng)家很少,價(jià)格比較貴;而且還沒(méi)有與之配套的在線(xiàn)檢修閥門(mén),面臨檢修儀表時(shí)需停運工藝系統的風(fēng)險。
 
(3) 裝置三中采用低成本的差壓變送器代替了價(jià)格昂貴的質(zhì)量流量計和音叉密度計,通過(guò)合理的選型和安裝設計,也能達到測量漿液密度的要求,使其在一些脫硫裝置中得以應用。而且由于吸收塔漿液密度實(shí)際會(huì )隨著(zhù)液位高度的變化、氧化空氣的分布情況而變化,故測量吸收塔某一固定高度的密度并不能真實(shí)反映整個(gè)漿池的密度情況,而差壓變送器的 2 個(gè)膜片相距較遠,計算出的密度值是該高度范圍內的平均值,理論上更接近漿池內的真實(shí)密度值。而此裝置的缺陷也在于差壓變送器的 2 個(gè)膜片安裝位置,當液位在高壓側膜片下方時(shí),差壓變送器顯示為零,因此密度計算值 ρ 和液位計算值 H 均為零,不能反映液位的真實(shí)情況;當液位在高、低壓側膜片之間時(shí),密度計算值 ρ 會(huì )隨著(zhù)液位的升高而逐漸增加,但均會(huì )小于漿液的真實(shí)密度值,因此液位計算值 H也不具備參考價(jià)值。只有當液位上升至低壓側膜片之上時(shí),本裝置的計算結果才算正常,而由于 2 個(gè)膜片高差約 3 m,高壓側膜片距塔底約 1 m,故本套裝置的測量盲區大約為 4 m 左右。建議當液位運行在盲區時(shí),應在 DCS 或 PLC 控制系統中通過(guò)適當的數據處理,使得計算數據#大程度接近真實(shí)情況,并加大人工巡查力度,以彌補控制系統的不足。脫硫系統正常運行時(shí)的液位在 10 m 左右,故本裝置還是適用于脫硫系統工況條件的。
 
4 結束語(yǔ)
綜上所述,各脫硫裝置應根據自身的不同條件,如運行人員的技術(shù)水平、運行人員的工作強度要求以及脫硫系統停運對其他工藝系統的影響等因素,綜合比較后選擇合適的吸收塔液位測量裝置,從而達到安全穩定、經(jīng)濟實(shí)用的效果。
注明,三暢儀表文章均為原創(chuàng ),轉載請標明本文地址

您可能感興趣的文章 Technique
相關(guān)產(chǎn)品 Technique
產(chǎn)品分類(lèi) ProductsClass

壓力變送器廠(chǎng)家

隔膜式單平法蘭遠傳壓力變送器

空壓機專(zhuān)用壓力變送器

恒壓供水壓力變送器

衛生平膜型壓力變送器

爐膛負壓變送器

羅斯蒙特3051S壓力變送器

壓阻式壓力變送器

壓力變送器殼體

HART375手操器

HART475手操器

3051TG壓力變送器

壓力控制器

衛生型隔膜壓力變送器

隔膜密封式壓力變送器

擴散硅壓力變送器

SC530A壓力變送器

SC430A壓力變送器

SC433衛生型壓力變送器

SC-BP800壓力變送器

智能壓力變送器

單法蘭壓力變送器

一體化風(fēng)壓變送器

高溫壓力變送器

小巧型壓力變送器

2088擴散硅壓力變送器

負壓變送器

絕對壓力變送器

擴散硅壓力變送器

3051壓力變送器

遠傳法蘭變送器

智能變送器

差壓變送器廠(chǎng)家

高靜壓差壓變送器

微差壓變送器

單法蘭遠傳壓力變送器

隔膜密封式差壓變送器

智能差壓變送器

雙法蘭毛細管差壓變送器

雙法蘭差壓變送器

遠傳差壓變送器

法蘭安裝式差壓變送器

電容式差壓變送器

單法蘭凸膜片遠傳差壓變送器

雙平法蘭遠傳差壓變送器

雙法蘭高精度差壓變送器

單法蘭隔膜差壓變送器

單法蘭差壓變送器

SC3351DP智能微差壓變送器

液位變送器廠(chǎng)家

射頻導納料位開(kāi)關(guān)

射頻導納物位計

單法蘭液位計

硫酸儲罐液位變送器

射頻導納料位開(kāi)關(guān)

靜壓式液位變送器

射頻電容液位計

高溫投入式液位計

雙法蘭遠傳液位變送器

電容式液位變送器

差壓式液位計

差壓式液位變送器

雙法蘭液位計

射頻導納物位開(kāi)關(guān)

射頻導納液位計

磁致伸縮液位計

單法蘭液位變送器

阻旋式料位開(kāi)關(guān)

投入式液位計

法蘭式液位變送器

法蘭式液位計

電容式液位計

雙法蘭液位變送器

高溫投入式液位變送器

防腐投入式液位變送器

投入式液位變送器

音叉開(kāi)關(guān)

料位開(kāi)關(guān)

溫度變送器

一體化溫度變送器

一體化數顯溫度變送器

雙金屬溫度計

WSSX-411電接點(diǎn)雙金屬溫度計

WSS-401雙金屬溫度計

WSS-481雙金屬溫度計

WSSE-411一體化雙金屬溫度計

WSSX-481B防爆電接點(diǎn)雙金屬溫度計

WSSX-410B防爆雙金屬溫度計

WSSE-501一體化雙金屬溫度計

WSSE-401雙金屬溫度計一體化

指針式溫度計

熱電偶

高溫高壓熱電偶

高溫貴金屬熱電偶

熱風(fēng)爐拱頂熱電偶

電站測溫專(zhuān)用熱電偶

鎧裝鉑銠熱電偶

隔爆熱電偶

防爆熱電偶

高溫高壓熱電偶

耐磨阻漏熱電偶

耐磨熱電偶

耐磨切斷熱電偶

裝配熱電偶

鎧裝熱電偶

鉑銠熱電偶

耐磨熱電偶

密煉機用耐磨熱電偶

低溫噴涂耐磨熱電偶

煤粉倉耐磨熱電偶

水泥廠(chǎng)窯爐用耐磨熱電偶

水泥廠(chǎng)專(zhuān)用耐磨熱電偶

耐磨熱電偶

熱電阻

壓力校驗儀

壓力表

數顯壓力表

精密數字壓力表

壓力變送器知識
熱門(mén)文章Technicalnews
智能差壓變送器 擴散硅壓力變送器 射頻導納開(kāi)關(guān) 投入式液位變送器 雙法蘭液位變送器 一體化溫度變送器 單法蘭液位變送器
旋進(jìn)旋渦流量計|射頻導納液位計|壓力控制器| 壓力表|隔膜壓力表|耐震壓力表| 耐磨熱電偶|天然氣流量計|壓縮空氣流量計|熱式氣體質(zhì)量流量計| 氨氣流量計| 熱電阻|投入式液位計|
靜壓式液位計|熱電偶溫度計|電接點(diǎn)壓力表|精密壓力表|智能壓力校驗儀|橫河EJA變送器|
銷(xiāo)售熱線(xiàn):0517-86998326 86998328 18952302362 13915186942 傳真:0517-86998327
3051TG壓力變送器 淮安市三暢儀表有限公司 壓力變送器 液位變送器 差壓變送器 制作版權所有 http://www.meneki-ryoku.net/ © 廠(chǎng)址:江蘇省淮安市金湖工業(yè)園區
<sup id="m6mg2"><code id="m6mg2"></code></sup>
<object id="m6mg2"><wbr id="m6mg2"></wbr></object>
<object id="m6mg2"><option id="m6mg2"></option></object>
<sup id="m6mg2"></sup>
<object id="m6mg2"><option id="m6mg2"></option></object>
<object id="m6mg2"></object>
<sup id="m6mg2"></sup><samp id="m6mg2"><object id="m6mg2"></object></samp>
<menu id="m6mg2"></menu>
<acronym id="m6mg2"><noscript id="m6mg2"></noscript></acronym>
堆龙德庆县| 修文县| 大兴区| 讷河市| 保亭| 连州市| 梁平县| 平顺县| 四平市| 原平市| 商城县| 龙泉市| 洪雅县| 渝中区| 溧阳市| 九龙县| 安丘市| 夹江县| 元氏县| 中超| 涿鹿县| 浏阳市| 兴仁县| 文登市| 靖宇县| 虹口区| 车险| 巨野县| 阿图什市| 甘南县| 航空| 双城市| 绥滨县| 四会市| 信阳市| 杭锦后旗| 庆云县| 犍为县| 瓮安县| 灵石县| 永城市| http://444 http://444 http://444 http://444 http://444 http://444